Minus domination in small-degree graphs

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Upper minus total domination in small-degree regular graphs

A function f :V (G) → {−1, 0, 1} defined on the vertices of a graph G is a minus total dominating function (MTDF) if the sum of its function values over any open neighborhood is at least one. An MTDF f is minimal if there does not exist an MTDF g:V (G) → {−1, 0, 1}, f = g, for which g(v) f (v) for every v ∈ V (G). The weight of an MTDF is the sum of its function values over all vertices. The mi...

متن کامل

Twin minus domination in directed graphs

Let $D=(V,A)$ be a finite simple directed graph. A function$f:Vlongrightarrow {-1,0,1}$ is called a twin minus dominatingfunction (TMDF) if $f(N^-[v])ge 1$ and $f(N^+[v])ge 1$ for eachvertex $vin V$. The twin minus domination number of $D$ is$gamma_{-}^*(D)=min{w(f)mid f mbox{ is a TMDF of } D}$. Inthis paper, we initiate the study of twin minus domination numbersin digraphs and present some lo...

متن کامل

The minus k-domination numbers in graphs

For any integer  ‎, ‎a minus  k-dominating function is a‎function  f‎ : ‎V (G)  {-1,0‎, ‎1} satisfying w) for every  vertex v, ‎where N(v) ={u V(G) | uv  E(G)}  and N[v] =N(v)cup {v}. ‎The minimum of ‎the values of  v)‎, ‎taken over all minus‎k-dominating functions f,‎ is called the minus k-domination‎number and is denoted by $gamma_k^-(G)$ ‎. ‎In this paper‎, ‎we ‎introduce the study of minu...

متن کامل

Minus domination in graphs

We introduce one of many classes of problems which can be defined in terms of 3-valued functions on the vertices of a graph G = (V, E) of the form f : V + { 1, 0, l}. Such a fknction is said to be a minus dominating function if the sum of its function values over any closed neighborhood is at least one. That is, for every t’ E V, ,f(N[r~])> 1, where N[a] consists of 1: and every vertex adjacent...

متن کامل

global minus domination in graphs

a function $f:v(g)rightarrow {-1,0,1}$ is a {em minusdominating function} if for every vertex $vin v(g)$, $sum_{uinn[v]}f(u)ge 1$. a minus dominating function $f$ of $g$ is calleda {em global minus dominating function} if $f$ is also a minusdominating function of the complement $overline{g}$ of $g$. the{em global minus domination number} $gamma_{g}^-(g)$ of $g$ isdefined as $gamma_{g}^-(g)=min{...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Applied Mathematics

سال: 2001

ISSN: 0166-218X

DOI: 10.1016/s0166-218x(00)00219-5